vitkvv2017 (vitkvv2017) wrote,
vitkvv2017
vitkvv2017

Рассказы о бесконечности

                                  Рассказ о бесконечности, сочиненный ночью на берегу теплого моря
В. ЖВИРБЛИС
Бездонный ночной небосвод и неумолчный шум прибоя обычно помимо воли заставляют задуматься о бесконечности. Бесконечности пространства и бесконечности времени.
Бесконечность, впрочем, не столько привлекает, сколько пугает. Право, мороз подирает по коже, когда пытаешься ее представить наглядно. И видимо, поэтому человек, начиная с древнейших времен и кончая сегодняшним днем, неустанно ищет и мысленно создает вокруг себя уютный конечный мир.
Поначалу, дабы оградить мир, человек помещал плоскую Землю на трех китах или на трех слонах и придумал легенду о сотворении мира и конце света. Но так же, как в старину, никто не мог дать ответа на вопрос о том, где плавают киты или на чем стоят слоны, что было до сотворения мира и что будет после конца света, так и сейчас, несмотря на существование многих изощренных теорий мироздания, физический смысл простого, казалось бы, понятия «бесконечность» продолжает оставаться весьма туманным, и никто, кажется, еще не отыскал способа представить бесконечность по-настоящему наглядно.
Хотя математики такие же люди, как и все, они давно храбро бродят по необозримым просторам бесконечности.
Как им это удается? Что нужно, скажем, для того, чтобы абсолютно точно записать число е, обозначающее основание натуральных логарифмов?
На этот вопрос может быть два ответа.
Ответ первый: бесконечно большой лист бумаги и бесконечно большое время, ибо сколь мелко и быстро мы бы ни писали цифры, заполнять ими бесконечно большую поверхность бесконечным рядом e = 2,71828... придется бесконечно долго. В этом случае говорят о потенциальной бесконечности, то есть бесконечности, которая существует только потенциально, так сказать, в принципе, но реально никогда не может завершиться.
Ответ второй: любой клочок бумаги и несколько секунд, за которые можно набросать формулу, позволяющую вычислить число e с любой наперед заданной точностью. Для этого в формулу (ее можно найти в справочнике) нужно лишь по очереди подставлять возрастающие до бесконечности числа натурального ряда. Такую операцию принято обозначать сочетанием символов n → ∞; в этом случае бесконечность называют актуальной, то есть как бы раз и навсегда реально завершенной, реально существующей, хотя и не равной ничему определенному.
Хитрость последнего приема заключается в том, что вся бесконечность упрятывается в короткое сочетание символов, в котором время участвует в замаскированном виде: ведь n надо все время увеличивать! А вот физики, имеющие дело с реальным миром, никак не могут последовать примеру математиков, которые поступают по-своему логично, вовсе игнорируя время.
В физических формулах бесконечность возникает то и дело, и, чтобы от нее избавиться (ведь в реальном мире все величины должны быть конечными), физики в какой-то мере лукавят, молчаливо подменяя бесконечно большие величины очень большими, но все же конечными, а бесконечно малые величины просто игнорируют. Как говорится, если нет бесконечности, то нет и связанных с нею проблем.
Такое «округление» бесконечностей правомерно, когда речь идет об истолковании экспериментальных результатов (ведь точность измерений всегда конечна), но совершенно недопустимо в «чистой» теории. Например, сплошь и рядом приходится сталкиваться с совершенно бессмысленными, по сути дела, выражениями типа «бесконечно большая (малая) масса» или и «бесконечно малая (большая) скорость». Ведь это означает, что масса все время возрастает или убывает, что скорость все время уменьшается или увеличивается, то есть что масса и энергия неизвестно откуда берутся или неизвестно куда деваются. Можем ли мы представить себе ракету, скорость которой непрерывно растет, но двигатели которой не расходуют никакого горючего?
Значит, здесь в действительности имеются в виду не истинно бесконечно большие или бесконечно малые величины, а величины конечные – либо невообразимо большие, либо пренебрежимо малые. Иначе как могли бы физики описывать ситуации, которые никогда не реализуются?
Само слово «бесконечность» говорит, казалось бы, о том, что это нечто, не имеющее ни начала, ни конца. Бесконечная линия, бесконечная плоскость, бесконечное пространство... Это – наглядный образ потенциальной бесконечности. А может ли считаться бесконечным конечный отрезок? Скажем, длиной в один сантиметр?
С точки зрения чистой математики, актуально бесконечно большим может считаться и отрезок длиной в один сантиметр, и отрезок, равный диаметру атома водорода или электрона. И вообще любой, сколь угодно малый, но конечный отрезок – все дело лишь в том, чем его измерять. Ведь если единица измерения бесконечно мала (вернее, стремится к нулю), то бесконечно велик (точнее, стремится к бесконечности) и размер любого измеренного с ее помощью отрезка.
Другими словами, бесконечно большая величина вовсе не обязана быть невообразимо большой, она может иметь любые конечные (и даже крайне малые с нашей точки зрения) размеры, если для ее измерения используется величина бесконечно малая, то есть непрерывно уменьшающаяся во времени; но та же конечная величина может считаться и бесконечно малой, если она измеряется с помощью бесконечно возрастающей во времени величины.
То есть, по сути, у реальной физической бесконечности должны быть две неразрывно связанные друг с другом области – область бесконечно больших и область бесконечно малых, – и поэтому ее невозможно подразделять на потенциальную и актуальную. Такая бесконечность должна просто существовать.
В самом Деле, мы знаем, что вещество состоит из молекул, молекулы построены из атомов, атомы – из электронов и ядер, ядра – из протонов и нейтронов. А из чего построены сами электроны, протоны и нейтроны? Из кварков? А те из чего построены? То есть, как бы глубоко мы ни проникали в структуру частиц материи, мы сможем до бесконечности задавать один и тот же сакраментальный вопрос: из чего?
Оказывается, киты и слоны водятся не только в области бесконечно большого, но и в области бесконечно малого...
Всем прекрасно известно, что в космических просторах действуют вовсе не те физические законы, что в микромире. Там – теория относительности, специальная и общая: тут – квантовая механика. И хотя обе теории объединяет релятивистская квантовая механика, легче от этого не становится: все эти неклассические теории верно отражают результаты реальных экспериментов, но наглядно представить себе релятивистские и квантовые эффекты невозможно, потому что мысленно можно представить лишь явления, происходящие в ограниченном житейском мире умеренных размеров и скоростей, описываемом с точки зрения так называемого «здравого смысла» (читай – физического смысла) классической механики Ньютона. А коли так, то разве можно пытаться представить себе наглядно реальную физическую бесконечность?
Релятивистская квантовая отличается от классической лишь тем, что содержит два дополнительных постулата – о конечности и инвариантности скорости света и конечности кванта действия – постоянной Планка. Чем больше скорость тела и чем меньше его масса, тем необычнее становится его поведение. И наоборот: чем больше масса тела и чем меньше его скорость, тем точнее его поведение описывается классической механикой и тем легче мысленно его себе представить. Точно так же классическая механика тем точнее описывала бы поведение физических объектов, чем больше была бы скорость света и чем меньше – постоянная Планка.
Так что же тогда описывает классическая механика? Получается, что она вроде бы не описывает ничего: она годится лишь для описания либо реально не существующих объектов (с бесконечно большой массой и бесконечно малой скоростью), находящихся в реальном мире, либо реально существующих объектов, находящихся в реально не существующем мире (с бесконечно малой постоянной Планка и бесконечно большой скоростью света)...
Не правда ли, странный вывод? Однако его можно истолковать и так: классическая механика дает нам чисто умозрительную модель реального мира, как бы увиденного наблюдателем «извне», из бесконечности. Естественно, что свойства такой модели невозможно изучать экспериментально, поскольку наблюдатель не может ставить реальные опыты над воображаемыми или бесконечно удаленными от него объектами. А вот неклассические теории описывают тот же самый мир, но только как бы «изнутри», с точки зрения реального наблюдателя, составляющего единое целое с изучаемой им системой и способного на нее активно воздействовать: в этом случае теория и эксперимент дают строго согласующиеся между собой результаты, но только эти результаты уже невозможно представить себе умозрительно, в точном соответствии со «здравым смыслом».
Иначе говоря, взгляд на мир «изнутри» дает наблюдателю лишь относительно истинные сведения о наблюдаемом объекте, неизбежно искаженные тем, что наблюдатель и объект составляют единую физическую систему и влияют друг на друга. В отличие от этого взгляд на мир «извне», из бесконечности, дал бы наблюдателю абсолютно истинные сведения об объекте. Но ведь чтобы удалиться в бесконечность, необходимо бесконечно большое время... Не в этом ли заключается конкретный физический смысл философских соображений о бесконечности процесса познания абсолютной истины?
Мир един – различны лишь точки зрения на него. Но если абсолютно истинную картину мира невозможно наблюдать принципиально, то, может быть, ее можно вычислить? Например, найдя преобразования координат, подобные галилеевым или лоренцевым, которые позволили бы инвариантно переходить с точки зрения на мир «извне» на точку зрения на мир «изнутри» и наоборот. Не окажется ли тогда, что странные, на наш житейский взгляд, постулаты и выводы неклассических теорий – лишь неявный и не самый лучший способ избавиться от не менее странных, на взгляд современного физика-теоретика, бесконечностей классической модели мира?
Люди чаще всего задумываются о бесконечности, глядя в безлунное звездное небо. Но бесконечность неба – лишь, так сказать, половина настоящей физической бесконечности, простирающейся не только в области бесконечно больших, но и в область бесконечно малых величин. И даже не половина, а ее бесконечно малая часть.
С образом настоящей физической бесконечности людям приходилось сталкиваться не на просторе, а в уютной домашней обстановке, при модном в старину гадании на зеркалах. Делалось это так: в абсолютной тишине и полном одиночестве девица садилась за стол, поставив перед собой одно зеркало, а позади – другое; по бокам она ставила зажженные свечи, освещавшие лицо мерцающим светом. И потом пристально вглядывалась в свое до бесконечности повторяющееся отражение, задумав вопрос, на который хотела бы получить ответ. Вопрос, естественно, касался замужества...
Говорят, спустя некоторое время гадавшей начинало чудиться неизвестно что и, если она вовремя не набрасывала на одно из зеркал специально приготовленное на такой случай полотенце, то с перепугу падала в обморок.
Не смейтесь, попробуйте-ка сами посидеть в тишине и полумраке меж двух зеркал хотя бы минут пятнадцать, вглядываясь в шевелящуюся бесконечность, и вы – современный, рационально мыслящий человек – тоже почувствуете себя очень и очень неуютно. Рано или поздно перестанете понимать, где находитесь вы, а где – ваше отражение, а затем и потеряете чувство реальности, запутавшись в бесконечном ряду одинаковых лиц...
С еще более точным образом реальной физической бесконечности я сам случайно столкнулся в далеком детстве, в довоенные годы. Мне, тогда четырехлетнему, почтальон принес очередной номер «Мурзилки», на обложке которого была напечатана такая картинка: комната, в ней на диване сидит мальчик и разглядывает журнал «Мурзилка», на обложке которого изображена снова та же самая комната и снова на том же самом диване сидит мальчик с «Мурзилкой» в руках – и так, видимо, до бесконечности.
И вдруг я подумал: но ведь я тоже мальчик, и тоже сижу на диване в очень похожей комнате, и тоже рассматриваю журнал «Мурзилка». А что, если и я сам нарисован на обложке такого же журнала и ее разглядывает мальчик, который тоже сидит на таком же диване в такой же комнате и сам нарисован на обложке журнала «Мурзилка»? Тут от ужаса я заревел, бросил журнал и старался больше его не видеть, хотя почему-то страстно тянуло посмотреть на обложку еще раз...
Но откинем вздорные суеверия в сторону, обойдемся без рискованных психологических опытов и будем рассуждать без излишних эмоций. Будем считать, что сам я был мальчиком порядкового номера n и держал в руках журнал, на обложке которого изображен мальчик порядкового номера n – 1. И в то же время я нарисован на обложке журнала, который держит в руках мальчик порядкового номера n + 1. При этом будем считать, что n непрерывно возрастает, стремится к бесконечности. То есть что возрастает число миров, вложенных друг в друга, подобно матрешкам. Однако каким бы большим ни число n, в своем мире я всегда останусь самим собой и не смогу заметить, что оно все время возрастает; более того, я могу вообще не знать о существовании миров с порядковыми номерами n + 1 и n – 1. Более того, я могу изорвать в мелкие клочки журнал с напугавшей меня обложкой, враз уничтожив бесконечно большое число миров...
Но что от этого изменится? Если журнал был издан тиражом, скажем, в 1000000 экземпляров, то 999999 бесконечностей сохранится; если даже и эти экземпляры исчезнут, то ведь в 999999 мирах порядкового номера n + 1 сохранится 999999 · 1000000 экземпляров журнала, а число миров порядкового номера n + 1, в свою очередь, также равно 1000000 – и так далее, до бесконечности. Словом, в такой бесконечности не только порядковых номеров бесконечно много, но и каждый из номеров представлен бесконечно большим числом экземпляров.
Такая бесконечность может показаться пугающей не столько своей необозримостью и неисчерпаемостью, неуничтожаемостью и, так сказать, несоздаваемостью, сколько простотой, доходящей до абсурда. (Не потому ли ощущение бесконечности зачастую возникает у человека при тяжелой болезни? Вспомните описание бреда князя Болконского.) Иными словами, реальная физическая бесконечность – все то, что есть в нашем мире, – не может быть ни уничтожена, ни создана: она либо не существует вообще (что невозможно себе представить), либо существует всегда, вечно (что представить себе тоже невозможно). Так что вопрос – было ли у мира начало и будет ли у него конец – не имеет не только ответа, но и смысла, и прав был незабвенный Козьма Прутков, оставивший по этому поводу следующую притчу: «Однажды, когда ночь покрыла небеса невидимою своею епанчою, знаменитый французский философ Декарт, у ступенек домашней лестницы своей сидящий и на мрачный горизонт с превеликим вниманием смотрящий, – некий прохожий подступил к нему с вопросом: «Скажи, мудрец, сколько звезд на сем небе?» – «Мерзавец! – ответил сей, – никто необъятного объять не может! Сии с превеликим огнем произнесенные слова возымели на прохожего желаемое действие».
Мы, конечно, живем не на плоской обложке журнала, а в геометрически трехмерном мире, как мы условились, с порядковым номером n. И очень может быть, что этот мир – лишь ничтожный кирпичик мира с порядковым номером n + 1, а наш мир, в свою очередь, состоит из невообразимо большего числа миров с порядковыми номерами n – 1, которые мы называем частицами. И так до бесконечности – как вширь, так и вглубь. О такой бесконечности писал Валерий Брюсов в стихотворении «Мир электрона»; в наши дни физики высказывают серьезные гипотезы, согласно которым существуют частицы типа «черных дыр» (например, «фридмоны» академика М.А. Маркова), по устройству неотличимые от нашей Вселенной, и гипотезы, согласно которым вся наша Вселенная представляет собой «черную дыру» – частицу какого-то другого, невообразимо большего мира...
По-видимому, только такая бесконечность и может реально существовать: это Большая Бесконечность, где-то в середине которой (хотя какая середина может быть у бесконечности?) затерян и наш мир; все миры Большой Бесконечности, вместе взятые, существуют как бы вне времени, поскольку если оно течет бесконечно, то бесконечно удаленным от начала, которого никогда не было, может считаться любой миг, как может он считаться слившимся с началом.
И если математика, не боящаяся никаких бесконечностей, описывает именно Большую Бесконечность, то физика описывает лишь ее неизмеримо малую часть, в которой непременно есть и самое малое, и самое большое.
Куда бы ни обратился наш взор, мы увидим вещество. В каждом его грамме содержится примерно 10 частиц – электронов, протонов, нейтронов. Если каждая из этих частиц – мир порядкового номера n – 1, то, значит, внутри каждой из них горят мириады звезд, освещающих неисчислимое множество планет, среди которых могут быть и такие, на которых живут существа, способные размышлять о бесконечности.
Только все в этом мире происходит неизмеримо быстрее, чем в нашем, – наверное, во столько раз, во сколько наш мир больше электрона (если вслед за Брюсовым считать, что мир электрона неотличим от нашего) примерно в 1041 раз. Тогда если для нас мгновение длится 0,1 секунды, то в мире порядкового номера n – 1 за это время пройдет примерно 1023 миллиардов лет, а те 10 миллиардов лет, что существует наш мир, в масштабе времени мира с порядковым номером n + 1 промелькнут за 10–24 секунды – неизмеримо короче нашего мгновения.
Эти бесчисленные миры трепещут и в каждом язычке пламени свечи, и в каждой клеточке нашего тела. Число миров лавиной растет до бесконечности при движении и вширь и в глубь материи, от одного ее структурного уровня к другому. Все эти миры живут полнокровной жизнью, и даже если Земля – единственная колыбель разума, то это вовсе не значит, что мы одиноки во Вселенной: даже в каждой ничтожной пылинке, содержащей несчетное множество миров, должно быть заключено бесконечно большое число планет, населенных разумными существами. И быть может, каждый акт рождения электрон-позитронной пары – акт рождения бесчисленного множества миров, а каждый акт аннигиляции – свидетельство их гибели?
Все это наводит на слишком грустные размышления. Вернемся-ка лучше на нашу маленькую Землю, где днем светит солнце, а ночью – звезды, где есть и море и небо, И где есть близкие и друзья, рядом с которыми можно вовсе не думать ни о бесконечности, ни о том, что все, что имеет начало, имеет, к сожалению, и конец.
Tags: необычное, непознанное
Subscribe
promo vitkvv2017 september 4, 2017 09:35 2
Buy for 10 tokens
Борис Островский Дэвид Мей и Джозеф Монаган (университет Монах, Австралия) высказали предположение, что «пузыри метана, поднимающиеся с морского дна, могут топить корабли. Именно этим природным явлением и могут объясняться загадочные пропажи некоторых кораблей». Касательно…
  • Post a new comment

    Error

    Anonymous comments are disabled in this journal

    default userpic

    Your reply will be screened

    Your IP address will be recorded 

  • 0 comments